Outils pour utilisateurs

Outils du site


progc

Différences

Ci-dessous, les différences entre deux révisions de la page.

Lien vers cette vue comparative

Les deux révisions précédentesRévision précédente
Prochaine révision
Révision précédente
progc [2018/05/15 14:17] brbachelprogc [2018/10/11 20:49] (Version actuelle) – modification externe 127.0.0.1
Ligne 5: Ligne 5:
 Depuis le C++11, manipuler des threads en C++ est devenu plus simple et totalement portable. Voici un diaporama qui présente brièvement des fonctionnalités standards du C++ actuel qui permettent de lancer des tâches sur des threads et les synchroniser: {{ :wiki:multithread_cpp.pdf |}}. Deux couches d'abstraction sont disponibles: la première est simplement une surcouche objet des threads POSIX, le développeur manipule donc explicitement des threads; alors que la seconde est plus abstraite (et donc moins flexible) pour masquer les mécanismes multithread et simplifier le code. Le code des exemples de la présentation sont également disponibles: {{ :wiki:multithread_cpp.tgz |}}. Depuis le C++11, manipuler des threads en C++ est devenu plus simple et totalement portable. Voici un diaporama qui présente brièvement des fonctionnalités standards du C++ actuel qui permettent de lancer des tâches sur des threads et les synchroniser: {{ :wiki:multithread_cpp.pdf |}}. Deux couches d'abstraction sont disponibles: la première est simplement une surcouche objet des threads POSIX, le développeur manipule donc explicitement des threads; alors que la seconde est plus abstraite (et donc moins flexible) pour masquer les mécanismes multithread et simplifier le code. Le code des exemples de la présentation sont également disponibles: {{ :wiki:multithread_cpp.tgz |}}.
  
-Par programmation, il existe plusieurs manières d'estimer le nombre de coeurs disponibles pour le processus courant, ce qui permet de déterminer combien de threads il faut créer pour les besoins d'un programme. En voici trois en C/C++: ''std::hardware_concurrency'' (à partir de C++11), ''omp_max_threads'' (OpenMP), ''sched_getaffinity'' (module standard Linux). Le code suivant teste les trois solutions: [[http://fc.isima.fr/~toussain/docWiki/cores_estimator.cpp|cores_estimator.cpp]]. Il semblerait que les approches avec OpenMP et Sched fournissent les bonnes informations, alors que celle du C++ indique le nombre de coeurs de la machine et non celui de votre réservation SLURM. +Par programmation, il existe plusieurs manières d'estimer le nombre de coeurs disponibles pour le processus courant, ce qui permet de déterminer combien de threads il faut créer pour les besoins d'un programme. En voici trois en C / C++: ''std::hardware_concurrency'' (à partir de C++11), ''omp_max_threads'' (OpenMP), ''sched_getaffinity'' (module standard Linux). Le code suivant teste les trois solutions: [[http://fc.isima.fr/~toussain/docWiki/cores_estimator.cpp|cores_estimator.cpp]]. Il semblerait que les approches avec OpenMP et Sched fournissent les bonnes informations, alors que celle du C++ indique le nombre de coeurs de la machine et non celui de votre réservation SLURM. 
  
 ===== Mesure des temps de calcul ===== ===== Mesure des temps de calcul =====
progc.txt · Dernière modification : 2018/10/11 20:49 de 127.0.0.1